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Received 12 July 1988 

Abstract. I f  a gauge configuration has a non-trivial holonomy group @ in the vacuum, 
then the gauge symmetry is broken to the centraliser of @ in the gauge group. This approach 
to symmetry breaking has found important applications recently. Here we study this 
mechanism from a general point of view: given a compact Lie group G and a compact 
subgroup H, we find conditions for the existence of a group J with H = CJ (centraliser of 
J) ,  study the uniqueness of J ,  and ask whether J can be represented as the holonomy group 
of some connection. 

1. General remarks on the Hosotani mechanism 

Superstring theory [ l ]  gives rise, in a natural way, to very large gauge groups such as 
E8. It is fortunate that these symmetries need not be broken by means of the Higgs 
mechanism. In the case of E8,  for example, the vacuum gauge configuration is such 
that the holonomy group is SU(3) (at least in the simplest cases); if this SU(3) is 
embedded in E8 in the most natural way, then the latter is broken down to E6, which 
becomes the grand unification symmetry. The corresponding connection is flat, but 
can have a non-trivial holonomy group which again serves to break the E6 symmetry 
down to the strong plus electroweak group. 

This ‘Hosotani [ 2 ]  mechanism’ is of general interest, independent of these particular 
applications [3], and it is from this point of view that we wish to study it here. For 
the sake of organisation, we have arranged the results around one main question: given 
a compact Lie group G and a compact subgroup H, how can the Hosotani mechanism 
be used to break G down to H ?  First, we must find another subgroup J c G such that 
C J  = H, where CJ ,  the centraliser of J in G, is defined by C J  = {g E G such that g j  = j g  
for every J E J}. This is necessary because the group of vertical automorphisms of a 
principal bundle preserving a given connection is isomorphic to the centraliser of the 
latter’s holonomy group. Secondly, we must show that there exists a principal bundle 
over the base manifold M ,  with a connection having J as the holonomy group. If, as 
sometimes happens, no such bundle exists, then we must ask whether there is some 
other group 5 with C j =  H; that is, we must consider uniqueness as well as existence. 

One soon finds that, quite often, J does not exist; in other cases, there exists no 
principal bundle (over a specific base manifold) with a connection having J as holonomy 
group, for all J with C J  = H. Under these circumstances, G cannot be broken to H 
by means of the Hosotani mechanism. For example, let G = SU(n) ,  H = SU(m) ,  m < n, 
for any embedding. Then we shall show that SU(  n) has no subgroup of which SU( m )  
is the centraliser; that is, SU( n) cannot be broken to SU( m )  by the Hosotani mechanism. 
There are many such examples. This is to be constrasted with the case of the Higgs 
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mechanism. According to the Palais-Mostow theorem [4 ,5] ,  every compact subgroup 
of a compact Lie group G occurs as the isotropy group of some point in some 
representation space of G: thus, in principle, every such subgroup can be obtained 
via the Higgs mechanism. ( In  reality, of course, there are limitations of a physical 
nature-for example, the Higgs Lagrangian must be such as to lead to a renormalisable 
theory. It is important, however, to distinguish these restrictions from basic questions 
of mathematical principle.) 

This lack of flexibility certainly limits the applicability of the Hosotani mechanism. 
For example, we shall find that the Weinberg-Salam electroweak symmetry cannot be 
broken to the electromagnetic U( 1) in this way. On the other hand, it can be argued 
that a certain degree of inflexibility is a virtue; certainly, conventional gauge theory 
presents an  unwelcome variety of permissible choices of gauge groups and symmetry 
breaking patterns. Furthermore, the Hosotani mechanism only makes use of material 
already (implicitly) present in gauge theory-it does not introduce extraneous items 
such as scalar fields. Apart from its intrinsic attractions, this property may point the 
way to a more complete understanding of the origin of symmetry breaking in general. 
For example, in superstring theory, the process of ‘embedding the spin connection in 
the gauge connection’ (which leads, via the Hosotani mechanism, to the breaking of 
E8 to E6) arises from anomaly cancellation conditions, yielding a deep explanation of 
symmetry breaking, at least in this instance. 

A more serious drawback of this method is the following fact. Given G and a 
subgroup J, one cannot compute CJ until the embedding of J in G is specified. For 
example, the centraliser of SU(3) in E, is, indeed, E,-provided that SU(3) is embedded 
in E, in a particular way. But with a different embedding, the centraliser can be a 
certain disconnected group locally isomorphic to SU(2). Obviously this would be 
totally unacceptable for the superstring application. Now it can certainly be argued 
that, precisely because the centraliser is much ‘larger’ in the former case than in the 
latter, the first embedding is more natural than the second; and, as we shall see, this 
idea can (in a rough way) be quantified. Nevertheless this fact does detract somewhat 
from the ‘naturalness’ of this approach. 

Here we shall not attempt to explain why some embeddings are (physically) 
preferred to others. We raise this point mainly for technical reasons: clearly, no general 
investigation of the Hosotani mechanism can proceed very far unless some conditions 
are imposed on the type of embedding under consideration. A very simple quantitative 
scheme for distinguishing ‘good’ embeddings from ‘bad’ will be discussed below. 

Our results are divided into three sections: first, on the existence and uniqueness 
of ‘solutions’ of the equation CJ = H; second, on the existence of a principal bundle 
(over a given manifold M 1 having a connection with J as holonomy group; and  third, 
on specific examples. 

1 . 1 .  Notation 

If A is a subgroup of B, we denote the centraliser of A in B by CsA. The subscript 
is dropped if B = G, i.e. C = Cc. The centre of any group H, denoted Z H ,  is defined 
by Z H  = CHH.  Let G be a disconnected Lie group. The component containing the 
identity is a subgroup of G, usually denoted Go. Unfortunately, this notation is not 
convenient here; we shall use the symbol EG instead. Notations such as E C Z H  mean, 
of course, E( C ( Z ( H ) ) ) .  The word ‘subgroup’ should always be interpreted as ‘closed 
subgroup’ in the Lie group context. 
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2, Breaking a gauge group to a given subgroup 

The fundamental result on which the mechanism is based is the following theorem. 

Theorem 1 .  Let ( P ,  M ,  G) be a principal bundle over a base manifold M,  with structural 
group G, and with a connection having holonomy group 0. Then the group of vertical 
automorphisms of P preserving the connection is isomorphic to C O ,  the centraliser 
of in G. 

Proof: See [ 6 ]  and [7]. 

In physical language: the existence of a non-trivial gauge configuration in the vacuum 
breaks the gauge group to the centraliser of the holonomy group. In order, then, t o  
break a group G to a specified subgroup H, we must find a subgroup J with C J  = H. 
The first question, then, is: does J exist? 

2.1. Technical preliminaries 

We collect here some general results on centralisers. When a result follows in some 
straightforward way from a definition, the proof has been deleted. Note that, while 
the concept of a centraliser is well defined for subsets of a group as well as for 
subgroups, we are only interested in the subgroup case (since J must ultimately be 
represented as a holonomy group); therefore, the notation A c  B always means that A 
is a subgroup of B, where B is a group. Proper subgroups are denoted A =  B. If A 
and B are subgroups of G, then A .  B is defined as the subset of G consisting of all 
products ab, where a E A, b E B. It is a subgroup of G if and only if A .  B = B A, and 
henceforth we shall use this notation with the understanding that this condition is 
satisfied. We begin with some simple results, true for all groups. 

Lemma 2. Let A and B be subgroups of G, with A E  B. Then ( CBA) CBE CA. 

Corollary. C B E  C A .  

These results lead us to ask the following question. Suppose that A is properly contained 
in B. Then, is C B  properly contained in C A ?  The answer is ‘not necessarily’ and, as 
we shall see, this is an observation of fundamental importance. Suppose, then, that 
C A =  CB. How are A and B related? We have the following result. 

Lemma 3. Let A E B E G and suppose C A  = CB. Then B = C i A ,  where by definition 
CZ,A = C B (  CBA). 

Proof: By lemma 2 ,  we see that CB = C A  implies C ,Ac  CB. But from its definition, 
CBA E B, and so CBA E B n C B  = ZB. But by the definition of ZB,  we have Z B  E CBA, 
and so C B A =  ZB. Thus C i A =  C B Z B  = B. 

The significance of this result is that the statement C i A =  B is totally independent of 
the properties of G, and also of the way in which B is embedded in G. We shall use 
this result below. Lemma 3 suggests that we should examine the mappings Cz, C3 
and so on; we shall see later that they are of fundamental importance. 

We conclude this section with some results on centres. 
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Lemma 4. Let H be a subgroup of G. Then Z H  E ZCH. 

This result is useful in the actual computation of centralisers: it tells us, for example, 
that the centraliser of SO(4) in SO(7) cannot be S0(3) ,  since Z(SO(4)) = S,, while 
Z(SO(3)) = SI, the group consisting of the identity. 

A much deeper result on centres, due to Wolf, can be motivated as follows. Let 
H E  G. Then clearly H E CZH, and, if H is connected, H E ECZH. When do we have 
equality? 

Theorem 5. Let H be a connected subgroup of maximal rank in a compact Lie group 
G.  Then H is the identity component of the centraliser of Z H  in G; that is, H = ECZH. 

Proof: See [8, p 2761. 

Here, ‘maximal’ rank means rk( H) = rk(G); note that subgroups of maximal rank need 
not be maximal (i.e. there can exist a connected subgroup H with H c H c G-for 
example, SO( 10) x SO(6) c SO( 16) c E*, all three groups being of rank 8), and that 
maximal subgroups need not be of maximal rank (for example, SO(7) (rank 3) is 
maximal in SO(8) (rank 4)).  

2.2. Existence of J with C J  = H 

The key to the existence problem is the study of the ‘higher’ centralisers, C 2 H  = C (  CH) ,  
C3H = C (  C2H) and so on. Our first result is trivial. 

Lemma 6. Let H E G.  Then H E C2H. 

At this point some terminology is useful. We shall say that H E  G is a centraliser in 
G if there exists J with CJ = H. Theorem 1 implies that, in order to break a gauge 
symmetry G down to a subgroup H, it is necessary (though not sufficient) that H 
should be a centraliser in G.  Lemma 6 now allows us to characterise centralisers. 

Proposition 7. Let H be a subgroup of any group G.  Then H is a centraliser in G if 
and only if C 2 H  = H. 

Proof: If C 2 H  = H, then take J = C H .  Conversely, suppose that there exists at least 
one J with CJ = H. Then C2J = C H  and so, by lemma 6, J E C H .  Now, by the corollary 
to lemma 2, we have C 2 H  E CJ = H. But by lemma 6, H E  C 2 H  and so H = C2H. 

Thus, if H # C2H (i.e. in view of lemma 6, if it is a proper subgroup), then there 
exists no J with CJ = H; an extremely simple yet powerful result. In simple cases, the 
condition C 2 H  = H can be checked by means of a direct computation. Often, however, 
we can use proposition 9 derived below. 

Proposition 7 suggests that it may be useful to examine C3H, C 4 H  and so on. In fact, 
these groups exhibit an interesting ‘periodicity’. 

Lemma 8. Let H E G .  Then 

C “ H  = C H  n odd. 

= C 2 H  n even. 
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Proof: Obviously C H  and C 2 H  are centralisers. Hence, by proposition 7, C3H = 
C 2 (  C H )  = C H ,  while C 4 H  = C’( C 2 H )  = C2H,  and so on. 

Thus, there is nothing new to be obtained beyond C’H. However, lemma 8 allows us 
to prove the following very useful result. 

Proposition 9. Let H G G .  Then Z H = Z C H  is a necessary condition for H to be a 
centraliser in G. 

Proof: By lemma4, we have Z H  E Z C H  E ZC’H E ZC3H.  But by lemma 8, C3H = C H ,  
so we have Z C H = Z C ’ H  always. Now if H is a centraliser, then, by proposition 7, 
H = C’H, SO ZCH = ZC’H = ZH. 

Remark. In the course of the proof we found that, whether or not H is a centraliser, 
we always have Z H  c Z C H  = Z C ” H  for all n 3 1. 

This result shows that the centres of H and C H  play a key role in determining whether 
H is a centraliser. From a practical point of view, the result often greatly simplifies 
the task of showing that a given subgroup is not a centraliser. For example, it is 
immediately obvious that SO(3) cannot be a centraliser in SO(7): for the centraliser 
of SO(3) in SO(7) must clearly be at least as large as S0(4 ) ,  which already has a larger 
centre than SO(3). The case of SU( m )  embedded in SU( n )  can be treated with similar 
dispatch. We shall return to this in 0 4. 

The obvious question at this point is that of whether Z H  = Z C H  is suficient, as 
well as necessary, for H to be a centraliser. Intuitively, it is rather clear that this is 
asking too much; however, the study of this question will greatly clarify the reasons 
for the fact that certain subgroups are centralisers while others are not. 

Before proceeding to that study, however, let us consider the case where H is a 
centraliser, so that C’H= H. Then obviously H is the centraliser of C H .  But, in 
general, C H  is not the only group J with CJ = H; and so it may be necessary to make 
a choice from a set of candidates. It is important, for various reasons, to have some 
understanding of the range of possibilities in a given case. We raise this question of 
uniqueness at  this point because of the following curious circumstance. If we combine 
lemma 3 with proposition 7 ,  and note that every group G satisfies G = CZG, then the 
following result emerges. 

Proposition 10. Let A E B G G and suppose CA = CB. Then A = B if and only if A is 
a centraliser in B. 

One might say, then, that the non-uniqueness problem arises from the fact that not 
every subgroup of a given group is necessarily a centraliser in that group. On the other 
hand, from lemma 8 we have C H  = C3H,  which can be written as C ( H )  = C(C’H). 
Comparing this with proposition 7, we can say that the failure of some subgroups to 
be centralisers arises from the fact that C A  = C B  does not necessarily imply A = B-that 
is, from non-uniqueness. So we have a kind of duality between the existence and 
uniqueness problems for ‘solutions’ of the equation CJ = H. This means that techniques 
for solving either problem can usually be applied to the other. We shall therefore 
postpone the question of whether Z H  = Z C H  is sufficient for H to be a centraliser 
until we have some more information on the consequences of C A =  CB.  
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Without further information on embedding (see below), it is not possible to obtain 
very precise results. One  expects, however, that if A E B E G and C A  = C B ,  then A 
cannot be much ‘smaller’ than B. In the case of Lie groups, this can be made more 
precise as follows. Recall that, if A and B are connected, then A is said to be maximal 
in B if there exists no connected group D with A c D c  B. (Note the word ‘connected’: 
in some cases the concept of ‘maximality’ does not make sense without this restriction.) 
We shall say that A is semi-maximal in B if  there exists no connected subgroup D of 
maximal rank (in B) with A c  D c  B. Obviously, every maximal subgroup is semi- 
maximal, but the converse is not true. When B is semisimple, however, counterexamples 
are rather uncommon. (An  easily analysed case is provided by embedding the algebra 
of the exceptional group Gz in the algebra of S0(8 ) ,  as in table 14 of [9]. Since G, 
itself is the only [ 101 connected group with this algebra, we have in fact an  embedding 
of G 2  as a subgroup of SO(8). Now G ,  is not contained in any maximal rank proper 
subgroup of S0(8),  but it is not maximal, because it is contained in the (maximal) 
SO(7) subgroup of SO( 8).) Thus, ‘semi-maximality’ still implies a close relationship 
between A and B. 

We now have the following result. 

Proposition 1 1 .  Let A E  B be compact, connected subgroups of a Lie group G ,  with 
C A =  CB.  Then A is semi-maximal in B. If (rank B) - (rank A) 1, then A is maximal 
in B; if rank A = rank B, then A = B. 

Proof: Combining lemma 3 with the remark after proposition 9, we have Z A G  Z C k A  = 
Z B .  Now let D be a connected group with A G  D c  B. Then D is compact, and  by 
the corollary to lemma 2 we have C B c  C D G  C A ,  so C A =  CD = CB.  By the above 
reasoning, Z A  c Z D  G Z B .  Now it follows that B = C B Z B  c C B Z D ,  so in fact B = 
C B Z D .  Since B is connected, B = ECBZD. Now theorem 5 gives B = D if D is of 
maximal rank in B, and so A is semi-maximal in B.  If (rank B) -(rank A)  s 1, then 
any D with A E D E B must have either rank D = rank A or rank D = rank B. Repeating 
the above argument, we have either D = A  or D =  B, so A is maximal in B. Finally, 
the same reasoning shows that if rank A = rank B, then A = B. 

Setting A = U ( l ) ,  B = U ( 1 I 3  ( = U ( l ) x U ( l ) X U ( l ) ) ,  and G = U ( l I 4 ,  one sees that 
this result cannot be improved unless further conditions are imposed; thus proposition 
11 is the basic result on the consequences of the equation C A  = C B .  By the ‘duality’ 
mentioned earlier, i t  is also the basic result for further investigations of the conditions 
under which C‘H = H. In order to proceed, we must now discuss the question of 
embeddings. 

2.3. Choosing the embedding 

The group U( 1 )  x SU(3)  can be regarded as a subgroup of SU(6). What is its centraliser? 
Unfortunately, this question cannot be answered until the embedding is specified. For 
example, if we choose the most natural embedding, 

where a E U(  l ) ,  s E SU(3)  and  Z3 is the 3 x 3 identity matrix, then the centraliser is 
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isomorphic to U( 1) x SU(3). But if we choose the embedding 

then the centraliser will be quite different. Similarly, the centraliser of SU(3) in E8 is 
E6 only if the ‘most natural’ embedding is chosen. 

Clearly, the natural embeddings of H in G are those for which the centraliser is 
as large as possible. The usual way of ordering Lie groups (in the Cartan classification, 
for example) is by their rank. We shall therefore use r k C H  as an  (admittedly very 
rough) measure of the ‘size’ of C H .  Now given any two groups G and H (not necessarily 
a subgroup of G ) ,  define a quantity pG(H) by 

pG(H) = rkG - rkH + rkZH.  

This quantity has the property that, if H should be a subgroup of G, then p G ( H )  
is entirely independent of the embedding-it depends only on the intrinsic (invariant) 
properties of G and H. The importance of this particular combination of invariants 
derives from the following lemma. 

Lemma 12. Let H be a subgroup of a Lie group G, embedded in any way. Then 
r k C H  pG(H). 

Proof: Clearly H . C H  = (CH)  H, so H . C H  is a subgroup of G. Thus rk(H C H )  s 
rkG. The result now follows from an elementary computation, using Z H  = H n C H .  

The quantity pG(H) thus places an  invariant upper bound on the ‘size’ of C H .  In a 
surprising number of cases, these very elementary considerations give the best possible 
upper bound, in the sense that there exists a n  embedding with r k C H = p G ( H ) ;  the 
exceptional cases cause no problems. 

The idea that C H  should be as large as possible can now be interpreted to mean 
that r k C H = p , ( H ) .  In such a case we shall say that the embedding is satisfactory. 
For example, the usual embedding of SU(3) in E8 is satisfactory, since pG(H)  = 
8 - 2 + 0 = 6 ,  which equals the rank of E6. The property of being satisfactory is not, 
in fact, particularly restrictive: for example, both embeddings of U ( l )  x SU(3) in SU(6) 
given above are satisfactory. Without some such restriction, the range of possibilities 
for C H  (given G and H )  is excessive. For example, with G = E8, H = SU(2), we have 
pG(H) = 7. There is an embedding with r k C H  = 7; but, at the opposite extreme, there 
is another with r k C H  = 0. 

If we confine our attention to satisfactory embeddings, it becomes possible to 
clarify, for example, the conditions under which H E  G is a centraliser. We saw earlier 
(proposition 9) that Z H  = Z C H  is necessary for H to be a centraliser. Is it sufficient? 
Unhappily, the answer is ‘not quite’, as the following result shows. 

Proposition 13. Let H be a connected subgroup, via a satisfactory embedding, of a 
compact Lie group G. Then if Z H  = Z C H ,  H is the identity component of C’H. 
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Pro05 From lemma 6 and the fact that H is connected, we have H c E C 2 H  C_ C’H. 
By the corollary to lemma 2, we now find C’HE C E C ’ H E  C H  and so by lemma 8, 
C H  = C(EC’H) .  

Now as mentioned at the end of 8 1 ,  we always take Lie subgroups to be closed. It 
can be shown [7] that for any subgroup (indeed, subset) S of a topological group G ,  
C S  is always closed. Since G is compact, it follows that H, C H ,  C’H and EC’H are 
all compact. Now since H and EC’H have the same centraliser, it follows from 
proposition 1 1  that H is semi-maximal in EC’H. But we can do better than this. We 
have r k C H  = pG( H), so rkH = rkG - r k C H  + r k Z H  = rkG - r k C H +  rkZCH since 
Z H  = Z C H  by hypothesis. Thus rkH = p G (  CH) ,  and so, by lemma 12, rkH 3 rkC’H. 
But H is a subgroup of C’H, so rkH C rkC’H, whence rkH = rkC’H = rkEC’H. Then 
proposition 11 gives H = EC’H, as required. 

Remark. Clearly, the condition Z H  = Z C H  can be weakened to r k Z H  = rkZCH.  This 
will be useful below. 

Thus if H is connected and  C 2 H  is not, then H fails to be a centraliser even though 
Z H  = Z C H  may be satisfied. For example, the centraliser of SO(4) in S0 (7 ) ,  with the 
obvious embedding, is isomorphic to T2 x SO(3). Since Z(SO(4))  = %’ and SO(3) has 
trivial centre, we have Z(SO(4))  = ZC(SO(4)) but in fact C‘(SO(4)) = O(4).  The 
identity component is indeed S0(4 ) ,  in agreement with proposition 13 (the embedding 
is satisfactory), but the fact remains that SO(4) is not a centraliser in SO(7); indeed, 
SO( m )  is never a centraliser in SO( n ) ,  for all n and 2 < m < n. That is, the Hosotani 
mechanism cannot break S O ( n )  to S O ( m )  (unless m = 2 ) .  

Proposition 13 suggests that, in many cases, it will be difficult to use the Hosotani 
mechanism to break connected groups down to connected subgroups; it may be easier 
to obtain disconnected gauge groups. For example, i f s  E 0 ( 4 ) ,  let d = det(s) and embed 
O(4) in SO(7) by mapping s to [5 LJ.  Then C‘(O(4)) = 0(4), so O(4)  is a centraliser 
in SO(7). As we shall see later, O(4) also satisfies the other conditions for the Hosotani 
mechanism to apply. Thus we reach the remarkable conclusion that, while SO(7) 
cannot be broken to S0(4 ) ,  it can be broken to O(4). This suggests that the possibility 
of disconnected gauge groups [ 1 1 ,  121 should be investigated further. 

2.4. The question of uniqueness 

Referring again to theorem 1 ,  we see that in order to break G to H, it is not enough 
merely to find J with CJ = H: we must also find a principal bundle with a connection 
having J as holonomy group. Anticipating the results of 8 3, it can be shown that such 
a bundle nearly always exists if J is connected; so among the various ‘solutions’ of 
CJ = H, the connected J (if any) may be of particular interest. In other cases, the 
zero-dimensional J (if any) are of interest. In short, we need some control over the 
range of possible J. The basic result is as follows. 

Lemma 14. Let J be any subgroup of Lie group G such that CJ = H. Then J is a 
subgroup of C H .  If J is connected, then C ( E C H )  = H. 

Proof: If CJ = H, then C‘J = C H  so J G  C H  by lemma 6 .  If J is connected then 
J G  E C H s  C H  and so by the corollary to lemma 2, C’HG C E C H c  CJ= H. But H 
is a centraliser so, by proposition 7, C E C H  = H. 



Group-theoretic aspects of Hosotani mechanism 2317 

The first part of this lemma means that, in order to find all possible J, we need only 
examine the subgroups of C H .  Now of course C H  itself is a possible J; often, however, 
C H  is disconnected, and it is frequently not possible to represent a disconnected group 
as the holonomy group of a connection on a bundle over a given base manifold M. 
If that should be the case, we can look for disconnected subgroups of C H  which can 
be thus represented, or we can examine connected subgroups (for which such a 
representation is always possible)-taking care, of course, to verify that we still have 
C J  = H. In this subsection we deal with the connected case, the more difficult discon- 
nected case being postponed to § 3. 

If C H  is disconnected, then its largest connected subgroup is, of course, ECH.  If 
the centraliser (in G) of E C H  is H, then we have succeeded in finding a connected J 
with C J  = H. If not, however, then the second part of lemma 14 tells us that there 
does not exist any connected J with C J  = H, and so we have no choice but to consider 
the disconnected subgroups. The only remaining question in the connected case, 
therefore, is this: if the centraliser of E C H  is H, is there any other connected J with 
C J  = H ?  As usual, the answer depends on the embedding; in the semisimple case, the 
embedding is the only ‘variable’. 

Proposition 15. Let H be a semisimple subgroup of a compact Lie group G, and let J 
be a connected subgroup of G with CJ = H. Then if J is satisfactorily embedded either 
in G or in CH,  we have J = E( CH) .  

Proof: By lemma 4, Z J  c Z H  and so 0 s rkZJ s rkZH = 0 since H is semisimple. Thus 
rkZJ = rkZCJ and so by the remark after proposition 13, J = EC2J = E C H ,  provided 
that J is satisfactorily embedded in G. If instead we know that J is satisfactorily 
embedded in C H ,  then denoting C H  by K we have J G K (lemma 14) and C J  = C K  = H, 
so as above r k Z K =  0, and also K =  C’,J (lemma 3). Then, by lemma 8, CKJ = C’,J = 
CKK = Z K ,  so rkZCKJ = rkZK = 0 = rkZJ. Then since K is compact, we have, by the 
remark after proposition 13, J = E C i J  = E K =  ECH.  

Within the realm of satisfactory embeddings, then, the identity component of C H  is 
the unique connected J with C J  = H (if there is any such J),  provided that H is 
semisimple. If H is not semisimple, then the problem quickly reduces to the study of 
its maximal semisimple subgroup; see the examples in § 4. 

The disconnected case is best considered in conjunction with the problem of 
representing J as a holonomy group, to which we now turn. 

3. Representing J as a holonomy group 

The necessary and sufficient condition for a gauge group G to be ‘breakable’ to a 
subgroup H is that there should exist a subgroup J which satisfies C J  = H, and which 
can be regarded as the holonomy group of a connection on a principal bundle over 
M. If such a bundle (with connection) exists, we shall say that J can be represented 
as a holonomy group over M. The basic result is the following slight modification of 
the Hano-Ozeki-Nomizu theorem. 

Theorem 16. Let M be a connected paracompact manifold with dim( M )  > 1, and let 
( P ,  M,  G) be a principal bundle over M, where G is any Lie group. Then there exists 
a connection on P with holonomy group isomorphic to G if and only if P is connected. 
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Proof: If P is connected, then it can be shown [13] that there exists a connection on 
P with all holonomy bundles isomorphic to P, and so with holonomy group isomorphic 
to G. On the other hand, if M is connected and paracompact, then the holonomy 
bundles of any connection are subbundles of P with structural groups isomorphic to 
the holonomy group; thus, if the latter is isomorphic to G, each holonomy bundle 
coincides with P. But by their very definition, holonomy bundles are obviously 
(pathwise) connected. 

In order for P to be connected, it is of course by no means necessary for G to be 
so; but in the connected case we do have an immediate result. 

Corollary. Let M be a connected paracompact manifold with d i m ( M ) >  1, and let J 
be a connected Lie group. Then J can be represented as a holonomy group over M. 

For we take P = M x J. Since, in practice, M is always connected, has d im(M) > 1, 
and is either Riemannian or pseudo-Riemannian (hence [ 141 paracompact), this 
corollary completely solves the holonomy representation problem when J is connected; 
in effect, every connected J can be thus represented. 

Consider, for example, the case of symmetry breaking from G = SO(7) to H = O(4). 
Here (see 0 4 for further details) C H = z 2 x S 0 ( 3 ) .  This is a case where C H  is 
disconnected, so, as in 0 2, we examine E C H  = SO(3). Its centraliser in SO(7) is indeed 
precisely 0(4), so we have found a connected J with CJ = H. (By proposition 15,  
SO(3) is the only such J, unless we look at unsatisfactory embeddings.) Thus, O(4) 
is the centraliser of a group which can be represented as a holonomy group, and so, 
as claimed earlier, SO(7) can indeed be broken to O(4) in this way. 

In practice, it may not be desirable or possible to use a connected J, even if one 
insists that H be connected. The situation as regards disconnected J, however, is just 
the reverse of the conclusion in the connected case: J cannot be represented as a 
holonomy group unless it satisfies very restrictive conditions related to the topology 
of M. In order to explain these, we need a few more facts about disconnected Lie groups. 

Let G be any group, with a normal subgroup N. Then G is said to be an extension 
of N by G/N.  It is said to be a split extension if there exists a group homomorphism 
(T: G/N-.G with ~ o a = i d e n t i t y  map on G/N,  where T :  G + G / N  is the projection. 
Such a homomorphism is clearly a monomorphism, so in this case G / N  can be regarded 
as a subgroup of G; in fact, since for every g E G there exists n E N with g = U (  .ng)n, 
we have G = ( G / N )  * N (which is not related in any simple way to ( G / N )  x N unless 
G / N c  CN) .  

Now if G is a disconnected Lie group, it can be shown [15] that the identity 
component EG is a closed normal subgroup of G, so that G is an extension of EG by 
G/EG. It may or may not be a split extension. The disconnected groups commonly 
encountered in physical applications are, in fact, split extensions of their identity 
components: for example, O ( n )  is a split extension of S O ( n )  by z2. (Map 1 to the 
identity matrix, and -1 to the matrix diag(-1, 1, 1 , .  . .). Note that this latter matrix 
does not commute with all elements of SO( n ) ,  and we cannot always write O( n )  = Z2 x 
S O ( n ) . )  A simple example in which the extension does not split is provided by the 
one-dimensional subgroup of SU(2) consisting of all matrices of the form [et .-S6] 

together with those of the form [-:-lo Here again G/EG = T2 (the Weyl group of 
the SU(2) al4ebra, in fact) but no homomorphism can map -1 to any element of the 
form [-:-,o ‘A], since no such matrix has square equal to [A y ] ,  
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Returning now to the problem of representing J as a holonomy group, we find that 
a complete treatment is possible when J is a split extension. 

Proposition 17. Let M be a connected paracompact manifold with dim( M )  > 1, and 
let J be a Lie group. Suppose that J is a split extension of its identity component. 
Then J can be represented as a holonomy group over M if and only if the fundamental 
group of M, r i ( M ) ,  admits a normal subgroup p such that 

rl(  M ) / p  = J/EJ. 

Prooj Let J be the holonomy group of a connection on a principal bundle over M. 
Then EJ is generated by parallel transport around contractible loops in M. Parallel 
transport around arbitrary loops therefore gives a homomorphism from r,( M) onto 
J/EJ. (Care must be taken to modify the loop so that it is smooth; see [13, p 751.) 
The stated isomorphism now follows from the homomorphism theorem [16] (that is, 
p is the kernel of the above homomorphism.) On the other hand, suppose that p exists. 
According to theorem 16, the only way to proceed is to construct a connected principal 
bundle over M with J as structural group. This may be done as follows. Let 6 be 
th_e universal covering space of M. It may be regarded as a principal bundle 
(M, M,  T,( M))  with ri( M) as structural group. Then, since p is normal, it is not hard 
to show that ( 6 / p ,  M, r i ( M ) / p )  is also a principal bundle over M. ( I t  is another 
covering space,) Denote r , ( M ) / p  by A. Then since J is a split extension, A is a 
subgroup of J ,  and so the structural group can be extended to J in the usual [17] way. 
The bundle space P = [(  f i / p )  x J]/A is connected, and so the result follows from 
theorem 16. 

Note that, if J is either connected or discrete, then it is (trivially) a split extension 
of its identity component, so these cases are subsumed under proposition 17. 

This result basically means that, given M and J ,  it is rather unlikely that J can be 
represented as a holonomy group if it is disconnected. A familiar example of a case 
where a disconnected group cannot be represented as a holonomy group is as follows. 
Let M be a Riemannian manifold and take J = O( n ) ,  n =dim( M). Suppose that r,( M) 
has no subgroup of index 2 (i.e. no subgroup with precisely two distinct cosets). Then 
since O( n ) / S O (  n )  = Z2, we find that there exists no bundle over M with a connection 
having holonomy group O ( n ) .  In particular, the Riemannian connection on the bundle 
of orthonormal frames has holonomy group no larger than S O ( n ) ,  so this bundle is 
reducible to an S O ( n )  bund!e. Hence [18] M is orientable. Thus, for example, any 
Riemannian manifold with fundamental group EZ3 is necessarily orientable, simply 
because of the impossibility of representing the disconnected group O( n )  as a holonomy 
group over such a manifold. (See [19] for the usual proof of this fact; note that since 
any group can be expressed as the disjoint union of its (right or left) cosets, any 
subgroup of index 2 is automatically normal.) 

It is important to note that, even if H can be expressed as C J  for some connected 
J, it may be desirable in some circumstances to express it as the centraliser of a 
zero-dimensional group. By lemma 14, it suffices to examine discrete subgroups of 
ECH;  by proposition 17, such a group can be represented as a holonomy group over 
a connected paracompact M with d im(M) > 1 if and only if it is isomorphic to r , ( M ) / p  
for some normal p. (Despite this last fact, these groups have the useful property of 
leading to gauge fields with vanishing field strength.) To take a simple example, embed 
SO(2) x S0(3) ,  in the obvious way, in SO(5). This subgroup is the centraliser of S 0 ( 2 ) ,  
which is connected; but it is also equal to C(Z,,), where fZn is the zero-dimensional 
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subgroup of SO(2) corresponding to the nth roots of unity in U(1). Provided that 
r , ( M )  admits a normal subgroup p with . r r , (M) /p  isomorphic to 2Zn for some n >2,  
we can break SO(5) to SO(2) x SO(3) by means of a connection with vanishing curvature 
(gauge field strength). Further examples may be found in 0 4. 

One final case remains to be considered: the case where J is not a split extension 
of its identity component EJ. Such groups have not yet arisen in actual applications, 
and so we shall not go into the details. From the proof of proposition 17, it is clear 
that it is still necessary to have r,( M ) / p  = J/EJ if J is to be represented as a holonomy 
group; the question is whether this is still sufficient (with the usual restrictions on M ) .  
To put the problem in perspective, let ( P ,  M, J )  be a principal bundle over M, where 
P is connected. (By theorem 16, this is the only case of interest.) Then P/EJ is a 
connected A bundle ( A  = J/EJ = . r r , ( M ) / p )  over M. Thus it is a covering space of M, 
and so, by the uniqueness theorem [ 131 for covering spaces, we have P/EJ = f i / p ,  
where fi is the universal cover of M. We conclude that any connected J bundle over 
M can be constructed as an EJ bundle over f i / p .  The point is that EJ is connected, 
and the problem of constructing such bundles (and of classifying them) is one which 
involves the details of the topology of M (homology groups, etc). For completely 
general disconnected J, then, one must expect that it will be necessary to impose further 
conditions on M in order to represent J as a holonomy group over M. For example, 
suppose that J is not a split extension of EJ but that it has the form J = F EJ, where 
F is a finite group. (This is not a contradiction-we suppose that F n  EJ is non-trivial.) 
Assume that F (which may not be unique) can be chosen so that it is isomorphic to 
r l ( M ) .  Then J can be represented as a holonomy group over M :  for (fi, M, F) is a 
connected bundle over M, and F (unlike A )  is a subgroup of J, so (as in the proof of 
proposition 17) we can extend to a connected J bundle over M and use theorem 16. 
(For example, take the non-split extension of U ( l )  consisting of SU(2) matrices [e: e%] 

and [-:-,a Let 2Zj4 be the subgroup of SU(2) generated by [ y  -A]. Then J = Z4 9 U( 1) 
and so this group can be represented as a holonomy group over any M with r , ( M )  
isomorphic to Z4.) Now note that the equation J = F EJ is consistent with the usual 
equation J/EJ = r l ( M ) / p  (for some normal p ) ;  for if we factor both sides of J = Fe EJ 
by EJ and use one of the isomorphism theorems [ 161, we have J/EJ = F/(Fn  EJ) which 
indeed has the form . r r , ( M ) / p  since we are assuming that F is isomorphic to .rrl(M). 
But since J is not a split extension of EJ, it follows that F is not a split extension of 
F n E J .  Thus we are imposing a stronger condition on the topology of M than 
previously: instead of merely requiring r , ( M )  to have a normal subgroup p ,  we are 
also requiring that r l ( M )  should not be a split extension of p .  The problem of 
determining, in general, the precise conditions under which a non-split J can be 
represented as a holonomy group over M will not be pursued here. 

4. Examples 

4.1. General remarks 

In this section we give a few examples of actual computations of centralisers. For 
connected groups, it is a relatively straightforward matter to compute the Lie algebra 
of the centraliser, but it is less easy to describe the global structure; a surprising variety 
of behaviour is possible. For disconnected groups, even the algebra of C H  cannot be 
predicted, given the algebra of H. The examples have been chosen either to illustrate 
these points, or because of their role in applications. 
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It is to be emphasised, however, that our interest in the precise global structure of 
C H  is motivated as much by physical considerations as by a desire for exactitude. 
Although this structure is (apparently) irrelevant to many applications, there are other 
situations in which it is of decisive importance. For example, it has been pointed out 
(see [20]  for a particularly clear discussion) that the matter Lagrangian of the Weinberg- 
Salam theory is such that the gauge group is U(2), not the locally isomorphic SU(2) X 

U( 1). Furthermore, this kind of global distinction between locally isomorphic groups 
can have physically important consequences: for example, it has a bearing on the 
monopole charges permitted by a given theory. Similarly the ‘standard model’ gauge 
group is not SU(3) x SU(2) x U( 1). This is indeed fortunate: for if the group were in 
truth SU(3) x SU(2) x U( l), then grand unification, whether in SU(5), SO( 10) or E6 
would be a mathematical impossibility. For (at least with the usual algebra embeddings) 
SU(3) x SU(2) x U( 1) is a subgroup of none of these groups-the subgroup in question 
is locally, but not globally, isomorphic to this group. These comments have a particular 
relevance in the present context. For just as C H  cannot be computed unless the global 
structure is investigated, this structure is completely and uniquely fixed in each case; 
hence, the result may not be entirely under our control. An example is discussed below. 

4.2. SO(m) in SO(n) 

We embed SO( m )  in the top left-hand corner of the SO( n )  matrices, m < n, as shown: 

[; zno,l* 

[*: el 

[d: el 

The structure of the centraliser depends on whether m is even or odd. If m = 2, then 
the centraliser is clearly S 0 ( 2 ) x S O ( n - 2 ) .  If m is an even number >2, then the 
centraliser is the set of all matrices of the form 

where s E SO( n - m ) .  This group is isomorphic to 2Z2 x SO( n - m). If m is odd, the 
situation is different because now - I ,  has determinant - 1, which allows us to ‘com- 
pensate’ for matrices with determinant -1 in the centraliser. Thus if s E O ( n  - m )  and 
d = det s, the centraliser consists of matrices 

and is isomorphic to O( n - m). As noted earlier, O( n - m )  is not necessarily isomorphic 
to ?Z2 x SO(n - m): there is an isomorphism when n - m is odd, but not when it is even. 

The centre of SO(m)  is SO(2)  when m = 2 ,  3, when m is even > 2 ,  and 2, when 
m is odd [21 ] .  Clearly, the centre of each of the above centralisers contains the centre 
of the relevant SO(m);  note that the centre of O ( n )  is 9, for all n (including n = 2). 
This fact is in agreement with lemma 4. 

We now wish to ask: for which m and n, if any, is S O ( m )  a centraliser in SO(n)?  
The following table may be helpful; data for O( m )  have also been given. (Here O( m )  
is embedded as 

0 dZn-, 
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depending on whether n - m is odd or even respectively.) 

Centralisers in SO( n )  

Here we have not bothered to compute C’(SO(m))  or C 2 ( O ( m ) )  when the centre, 
ZH,  is a proper subgroup of ZCH, for we know that Z H = Z C H  is a necessary 
condition for H to be a centraliser (proposition 9). In every case but one, this condition 
proves to be sufficient. Of the four cases with C2H = H, only the case H = S0(2),  
n =odd, has a connected CH.  All of the others have C H  disconnected, but they can 
be expressed as the centraliser of the identity component of CH:  we have C ( O ( m ) )  = 
Z 2 x  SO(n - m )  when m is even > 2  and n is odd, but O ( m )  = C(SO(n  - m ) ) ;  and 
C ( O ( m ) )  = O(n - m )  when m is odd and n is even, but O ( m )  = C(SO(n  - m)) once 
again; finally, we have 0 ( 2 ) ,  which, when n is odd, has centraliser T2 x SO( n - 2 ) ,  but 
O(2)  = C ( S O ( n - 2 ) ) .  Note that T2xSO(n - 2 )  provides an example (when n is odd) 
of a group H which is a centraliser of a disconnected group (namely O(2)) but not of 
any connected group; for in this case C E C H  = C(SO(2) )  = SO(2) x SO(n - 2 )  # H, so 
by lemma 14 there exists no connected group of which H is the centraliser. 

The principal conclusion to be drawn from the table, however, is the fact that 
SO( n )  cannot be broken by this mechanism to any SO( m )  unless m = 2 and n is odd. 
Other subgroups (such as SO(2) X SO(n - 2 ) )  can, however, be obtained, but we shall 
not enter upon this here. 

4.3. S U ( m )  and U ( m )  in S U ( n )  

We can embed both SU(m) and U(m) in SU(n), n > m ;  but whereas SU(m) has an 
obvious natural embedding, there is no such obvious choice in the case of U(  m ) ,  even 
if we consider satisfactory embeddings only (as we shall always do henceforth). These 
groups are of interest both in physics and in geometry: in particular, they arise as 
holonomy groups of Kahler manifolds. Recently it has been pointed out [ 2 2 ]  that the 
disconnected groups S,U(n) (defined, for any integer j >  1, as the subgroup of U(n) 
consisting of matrices A with det A E Tj) can also occur as the holonomy groups of 
Ricci-flat Kahler manifolds, so we shall also study their centralisers. 

We begin with SU(m) embedded in SU(n) as 

[; LOm] ’ 
If n = m + 1, the centraliser consists of matrices of the form 

f f y m ]  f fEU(1)  
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and is obviously isomorphic to U( 1 ) .  If n > m + 1, the situation is much more subtle: 
the centraliser consists of matrices of the form 

a E U(1), u E U(n - m ) ,  a m  det U = 1 .  
[a: :I 

While it is rather clear that this group is locally isomorphic to U( n - m ) ,  the existence 
of a global isomorphism is by no means obvious, because the equation am det U = 1 
has no unique solution for a, given U. We shall now briefly indicate how to use the 
homomorphism theorem [ 161 of elementary group theory to solve this kind of problem. 

The group in question consists of pairs ( a ,  U). Any U E U(n - m )  can be expressed 
as ps, p E U(l ) ,  s E SU(n - m ) ,  and so we can write ( a ,  U )  = (a ,  pln-,,,)(l, s), where 
ampn-"' = 1 .  Thus, the group has the form D .  SU(n - m ) ,  where D is the set of pairs 
(a ,  p )  with ampn-"' = 1 .  Now the map ( a ,  p ) +  aP is a homomorphism of D to U(1). 
Its kernel is the subgroup of D consisting of pairs ( a ,  a - ' ) ,  where a2"'-" = 1 ;  leaving 
aside the case n = 2m, this subgroup is isomorphic to The homomorphism 
covers U( 1) completely provided that, for any y E U( l ) ,  the equations ap = y, ampn-"' = 
1 have at least one solution pair. Again, this is the case provided n # 2m. The 
homomorphism theorem now gives D/%lzm-,,l = U( l ) ,  so that (since D is connected) 
D is isomorphic to U( 1)  itself. Thus when n # 2m, the centraliser of SU( m )  in SU( n )  
is U( 1) . SU( n - m )  = U( n - m )  globally. 

Strangely, however, the answer is different when n = 2m. In this case, the map 
( a ,  U )  -* (a ,  au) from C(SU(m)) to U(l )  x SU( m)  is an isomorphism (since det au = 
a m  det U = 1) .  Our final result, then, is that the centraliser of SU( m )  in SU( n )  is given 
by 

C(SU( m ) )  = U( n - m )  n f 2 m  

n = 2m. = U( 1)  x SU( m )  

(We remind the reader that U(n) = U(1) * SU(n) = [U( l )  x SU(n)]/2,,, where %,, = 
Z(SU( n)).) The break in the pattern as n passes through 2m is a remarkable illustration 
of the rich topological structure underlying this approach to symmetry breaking. 

We can draw two immediate conclusions from these results. Since Z(SU(m)) = Zm 
while ZC(SU(m)) = U(1) (if n # 2m) or U(1) x 2,,, (if n = 2m), we have (directly from 
proposition 9) the fact that SU( m )  is the centraliser of no subgroup of SU( n); that is, 
SU(n) cannot be broken to SU(m) by means of this mechanism, for all n and m < n. 
Secondly, it is now obvious that U( n - m) is a centraliser is SU(n) if n # 2m-it is 
the centraliser of the connected group SU(m) (or of U(1) if m = 1 ) .  Thus SU(n) can 
be broken to U(n - m )  for such m, n. When n = 2m, however, we obtain not U( m )  
but rather U(1) x SU(m). Can SU(2m) be broken to U(m)? Certainly U(m) can be 
embedded in SU(2m), as follows. Set S = (det U)-' for each U E U(m), and map U to 

[ 0 O" 0 I m - ,  ] E s u I ' m ) .  

But the centraliser of this subgroup is the set of all matrices 

a ~ U ( l ) ,  u E U ( m - l ) , p = ( a m  det U)-' 
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a group globally isomorphic to U( 1) x U( m - 1). (We ignore the case m = 1; it can be 
treated similarly.) Now clearly Z(U(m))  = U( 1)  # ZC(U( m ) )  = U(1) x U(1) and so 
U(m) is not a centraliser in SU(2m), at least not with this embedding. It can be shown, 
in fact, that U(m) is never a centraliser in SU(2m) except when m = 1 .  Thus we have 
the remarkable result that the Weinberg-Salam group U(2) (for example) can be 
obtained from SU(5) but not from SU(4). On the other hand, SU(2) x U(l) can be 
obtained from SU(4) but not from SU(5). The importance of a precise description of 
the gauge group should be clear from these examples. 

Finally, we give a very brief discussion of SjU( m ) ,  which we embed in SU( n )  in 
precisely the same way that U(m) was embedded in SU(2m) above. One can show that 

C(SjU(m))=U( l )xU(n-m- l )  if n > m + l  

=U(1)  if n = m + l .  

Since Z(SjU(m)) = Sjm, it is clear that SjU(m) is never a centraliser in SU(n). More 
importantly, note that, even though SjU( m)  has the same identity component as SU( m ) ,  
its centraliser in SU(n) is different (except when n = m + 1 ) .  

4.4. Gauge symmetry breaking in electroweak, grand uniJied and superstring theories 

The above examples illustrate some of the principal techniques for implementing the 
Hosotani mechanism. We shall now consider some actual cases of physical symmetry 
breaking. 

Consider first the Weinberg-Salam model. Here G=U(2) .  This group has two 
distinguished U( 1) subgroups, consisting, respectively, of matrices of the form 

[ 'd" e:e] [ei6 0 e-i8 O ] . 
The electromagnetic U(1) is a 'mixture' of these, consisting of matrices of the form 

where a and b are certain constant real numbers. If a f b (as is always the case in 
actual applications) then the centraliser is the group of matrices 

isomorphic to U( 1) x U( 1). Obviously, the condition Z H  = ZCH is violated, so the 
electromagnetic U(1) cannot be expressed as the centraliser of any subgroup of U(2) 
(including discrete subgroups, since proposition 9 applies to all groups). Unfortu- 
nately, then, the Hosotani mechanism cannot be used in the Weinberg-Salam theory. 
(Note that the embedding is satisfactory: pG(H) = 2 - 1 + 1 = rkCH.) 

A case in which the mechanism can be used is the SU(5) grand unified theory. 
Here G =  SU(5) and H is a subgroup locally isomorphic to SU(3) x SU(2) x U(1). In 
fact H consists of matrices of the form 

[ 0" :] U E U(2), t E U(3), (det u)(det t )  = 1 .  
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Setting U = as,, t = ps2, where U, p E U( l), s, E SU(2), s2 E SU(3), we have 

so H is isomorphic to D . [SU(2) x SU(3)], where D is the group of pairs ((U, p )  with 
(u2p3=1. Using the homomorphism theorem as in 04.3, one finds D = U ( l ) ,  so 
H = U(l )  * [SU(2) x SU(3)] = [U(1) x SU(2) x su(3)]/26, as in [20]. (Note that S2 x 
T3 = Z6.) Here CH is isomorphic to U( 1 ) :  it consists of matrices 

(Thus the embedding is satisfactory, since pc(H)  = 4 - 4 +  1 = rkCH.) Clearly C2H = 
H, so H is a centraliser. (Another way of seeing this, useful in cases where explicit 
computations are not feasible, is to note that SU(5) has the property that CJ is 
connected when J is connected. The result now follows from Z H  = ZCH and proposi- 
tion 13.) In fact H can be expressed as the centraliser either of a connected group, 
U(1), or of a discrete group S,,, embedded as 

Hence SU(5) can be broken to [U( 1 )  X SU(2) X su(3)]/%6 by a vacuum gauge field of 
vanishing field strength, provided that the underlying manifold satisfies r , ( M ) / p  = S,, 
for some n > 1 ,  n # 5,  and some normal subgroup p. 

Other, perhaps more realistic, grand unified theories can be discussed in a similar 
manner. The principal technical complication is the fact-we stress it again-that all 
computations must be performed at the Lie group level, not in terms of the correspond- 
ing algebras. For example, SO(10) does not have a subgroup isomorphic to SU(4) x 
SU(2) x SU(2). Its universal covering group, Spin(lO), does have such a subgroup 
(since Spin(6) is isomorphic [23] to SU(4), and Spin(4) is isomorphic to SU(2) x SU(2)), 
but, if we remain with SO(lO), the relevant subgroup is [SU(4)/22]x 
[(SU(2) x SU(2))/ZX2] = SO(6) x SO(4). Now for each n, U(n) has a natural embedding 
in SO(2n) given by [ l o ]  A+iB+[-AB i], so we have U ( ~ ) X U ( ~ ) C S O ( ~ ) X U ( ~ ) =  
SO(4) x SO(6) c SO( 10). As we know, the 'standard model' gauge group is a subgroup 
of U(2) x U(3), and so this is the correct subgroup chain for the left-right symmetric 
[24] symmetry breaking pattern for SO(10). If  we denote the standard model group 
by H, we find that C H  consists of matrices of the form ( G =  SO(10)) 

1 0 
cos @ I 2  -sin @ I 2  
sin @I2 cos @I2 

cos + I 3  -sin r$13 I o  sin 413 cos 413 
and so is isomorphic to S0(2 )xS0(2 ) .  (The embedding is satisfactory.) Hence 
Z H Z  ZCH and so H is not a centraliser in SO(10); thus SO(10) cannot be broken to 
the standard group. (The same is true of other subgroup chains, such as the one 
through SU(5).) On the other hand, the group U(2) x U(3) has the same centraliser 
as H (and so does SU(2)xSU(3)-this being one of many instances in which a 
non-semisimple subgroup has the same centraliser as its maximal semisimple subgroup). 
It is not difficult to show that C'(U(2) x U(3)) = U(2) x U(3), so SO( 10) can be broken 
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to this group (which is locally isomorphic to SU(3) x SU(2) x U(1) x U( 1)) by the 
Hosotani mechanism. As in the SU(5) case, the centraliser S 0 ( 2 ) x S 0 ( 2 )  can be 
replaced by discrete subgroups of the form %,, x %,,,, n and m > 2, provided that v,(  M )  
satisfies the usual restriction. 

Note that the Hosotani mechanism frequently leads to additional U ( l )  factors in 
the final gauge group. The problem, of course, is that we must satisfy Z H = Z C H ,  
while C H  becomes progressively larger as we consider larger G. (This suggests that 
we might consider embeddings which are not satisfactory. This is beyond our scope 
here.) Of course, the increasing size of C H  does not necessarily increase the ‘size’ of 
ZCH in a simple way. For example, consider the E6 grand unified theory [24]. This 
group has a maximal subgroup SU(3) . SU(3) . SU(3) (isomorphic [25] to [SU(3) x 
SU(3) x SU(3)]/%3). There are many ways of embedding U(2) x U(3) in this subgroup, 
but for the sake of concreteness we shall choose U(21 to be embedded in the first 
SU(3) as in § 4.3, and embed U(1) in the second SU(3) as 

[; ; a;2] cuEU(1). 

We now have a subgroup U(2) U( 1) - SU(3) = U(2) . U(3) = U(2) x U(3) in this case, 
the embedding being satisfactory as usual. Both the standard model group and 
U(2) x U(3) have centraliser U(1) * U(2). As in the case of SO(lO), the centre of the 
centraliser is U( 1) x U( 1); again U(2) x U(3) can be expressed as the centraliser of a 
subgroup of E6,  while the standard group cannot. But now there is a new complication, 
arising from the fact that the centraliser of U(2)xU(3)  is non-Abelian group 
U(1) 3 U(2). For if we wish to replace U(1) * U(2) by a discrete group, the latter will 
be non-Abelian and so cannot be represented as a holonomy group over a manifold 
with an Abelian fundamental group. The physical consequences of this have been 
described in [26]. 

Finally we consider, very briefly, the application of this method to superstring 
theory [ 1).  Here the initial gauge group is E8, and one has a vacuum gauge configuration 
which-depending [22] on the geometry of the base manifold M-may have holonomy 
group SU(3), S,U(3) or U(3). The centraliser of SU(3) in E8 is E6; this fact is not at 
all obvious, but we shall not go into the details here. (It is easy to show that the 
identity component of C(SU(3)) is E6, but connectedness is more difficult to establish.) 
In order to compute the centraliser s of S,U(3) and U(3), we need to select an 
embedding. The simplest procedure is to embed S,U(3) and U(3) in SO(6) as discussed 
above; then SO(6) is embedded, as in § 4.2, in SO( 16), which in turn is a maximal 
subgroup of E8 [ 101. These embeddings are satisfactory. Both groups have the same 
centraliser in SO(6): it consists of matrices 

1 cos OI, -sin OI, [ sin 01, cos 81, 

and is isomorphic to SO(2). From § 4.2, the centraliser of SO(6) in SO( 16) is Z2 x 
SO(10). The centraliser of SO(16) in E8 is T2. Then applying lemma 2 (twice) one 
finds that the desired centralisers contain SO(2) (2, x SO( 10)) . S2 = SO(2) e SO( 10) 
since both % factors are already contained in SO(2) . SO( 10). In fact, both centralisers 
equal SO(2) . SO(10). In this case (the centraliser being a subgroup of SO(6) x SO(10)) 
the actual global structure of SO(2) .  SO(10) is SO(2) xSO(10). 
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With other embeddings, one can no doubt obtain other groups. i t  is impossible, 
however, to embed SjU(3), j >  1 ,  in E8 so that the centraliser is E6: this follows from 
Z(SjU(3)) = 5?,j, Z(E6) = Z3, and lemma 4. Thus, although SU(3) and SjU(3) have 
the same identity component (and both can appear as holonomy groups of Ricci-flat 
Kahler manifolds), they lead to very different final gauge groups. Note finally that, 
whereas E6 can be broken to the rank 5 group U(2) x U(3), the Hosotani mechanism 
applied to SO(2) x SO( 10) yields the rank 6 group SO(2) x U(2) x U(3),  which is locally 
isomorphic to SU(3) x SU(2) x U(1) x U( 1 )  x U(1). 

5. Conclusion 

The results of 8 4 make it quite clear that the Hosotani mechanism can supplement, 
but not replace, the Higgs mechanism. This method cannot be used in electroweak 
theory, and, in grand unified theories, it tends to produce extra U( l )  factors in the 
final group. On the other hand, the fact that conventional gauge theory works for all 
compact Lie groups is no great virtue. On the contrary, this fact is strong evidence 
that conventional gauge theory needs to be combined with new procedures, so that 
gauge groups can be strongly restricted or even ‘predicted’. The general idea that 
symmetry breaking should involve centralisers may therefore be a step in the right 
direction; in general, not many subgroups can satisfy even the necessary condition 
Z H  = ZCH, and this is not always sufficient. 

The Hosotani mechanism teaches another lesson: that the custom of neglecting the 
global structure of gauge groups is a luxury which more complete theories will not 
permit. If a theory is capable of predicting the algebras of the various groups, then 
we should suppose that it is capable of telling us whether those groups are simply 
connected, how many connected components they have, and so on. We have seen that 
the Hosotani mechanism can break SU(4) to S U ( 2 ) x U ( 1 )  but not to U ( 2 ) =  
[SU(2) x U(l) ] /Z2,  that it can break SO(7) to O(4) but not to SO(4). No doubt these 
distinctions are unimportant for many applications; but the point is that the mechanism 
decides the issue for us. This kind of result is surely typical of symmetry breaking 
patterns in any more complete theory. Clearly, these alternative structures (including 
particularly the disconnected case) merit more attention than they have received 
hitherto. 
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